ModifiedBetaGeoNBDRV#
- class pymc_marketing.clv.distributions.ModifiedBetaGeoNBDRV(name=None, ndim_supp=None, ndims_params=None, dtype=None, inplace=None, signature=None)[source]#
Methods
ModifiedBetaGeoNBDRV.L_op(inputs, outputs, ...)Construct a graph for the L-operator.
ModifiedBetaGeoNBDRV.R_op(inputs, eval_points)Construct a graph for the R-operator.
ModifiedBetaGeoNBDRV.__init__([name, ...])Create a random variable
Op.ModifiedBetaGeoNBDRV.add_tag_trace([user_line])Add tag.trace to a node or variable.
Return the node inpust corresponding to dist params
Determine whether or not constant folding should be performed for the given node.
ModifiedBetaGeoNBDRV.grad(inputs, outputs)Construct a graph for the gradient with respect to each input variable.
ModifiedBetaGeoNBDRV.infer_shape(fgraph, ...)Try to return a version of self that tries to inplace in as many as
allowed_inplace_inputs.ModifiedBetaGeoNBDRV.make_node(rng, size, ...)Create a random variable node.
ModifiedBetaGeoNBDRV.make_py_thunk(node, ...)Make a Python thunk.
ModifiedBetaGeoNBDRV.make_thunk(node, ...[, ...])Create a thunk.
ModifiedBetaGeoNBDRV.perform(node, inputs, ...)Calculate the function on the inputs and put the variables in the output storage.
ModifiedBetaGeoNBDRV.prepare_node(node, ...)Make any special modifications that the
Opneeds before doingOp.make_thunk().ModifiedBetaGeoNBDRV.rng_fn(rng, a, b, r, ...)Sample a numeric random variate.
Return the node input corresponding to the rng
Return the node input corresponding to the size
Attributes
default_outputAn
intthat specifies which outputOp.__call__()should return.destroy_mapA
dictthat maps output indices to the input indices upon which they operate in-place.dtypeitypesnameotypessignatureview_mapA
dictthat maps output indices to the input indices of which they are a view.